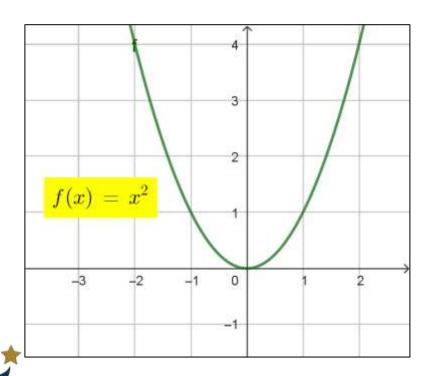
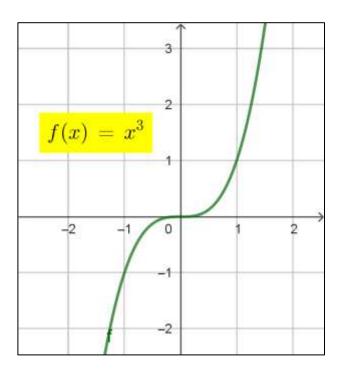


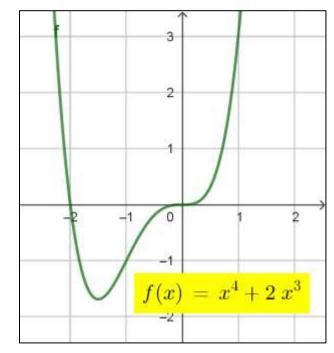
Graph of a function

We've learned that the curve is a form of representing a function f. It is the set of points of coordinates (x; f(x)) where $x \in D_f$.

Example:







Example 1:

Consider the function f defined over IR=]- ∞ ;+ ∞ [by $f(x) = x^2$. Study the variations of f and plot its curve (Cf).

1. Limits at the endpoints:

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^2 = +\infty \quad ; \qquad \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^2 = +\infty$$

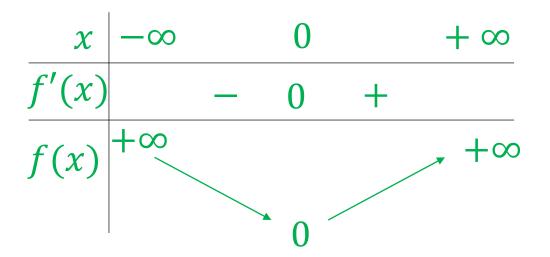
2. Derivative + zeroes of f'(x):

$$f'(x) = 2x$$

$$f'(x) = 0$$
 ; $2x = 0$; $x = \frac{0}{2} = 0$ $y = 0^2 = 0$

Example 1:

3. Table of variations.



4. Particular points if they exist
The particular points are the
intersecting points with axes of
coordinates:

$$(x'x)$$
: for $y = 0$; $x^2 = 0$; $x = 0$
 $(y'y)$: for $x = 0$; $y = 0$
So 1 p.p. $(0;0)$

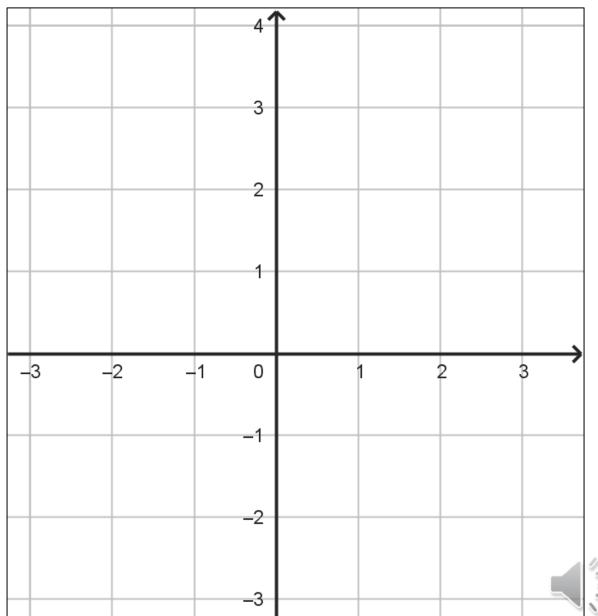
Example 1:

5. Plot the curve

Note that:

The curve of f is a reflection to the table of variations of f.

\boldsymbol{x}	$-\infty$		0		+ ∞
f'(x)		_	0	+	
f(x)	8				, +∞
			0		



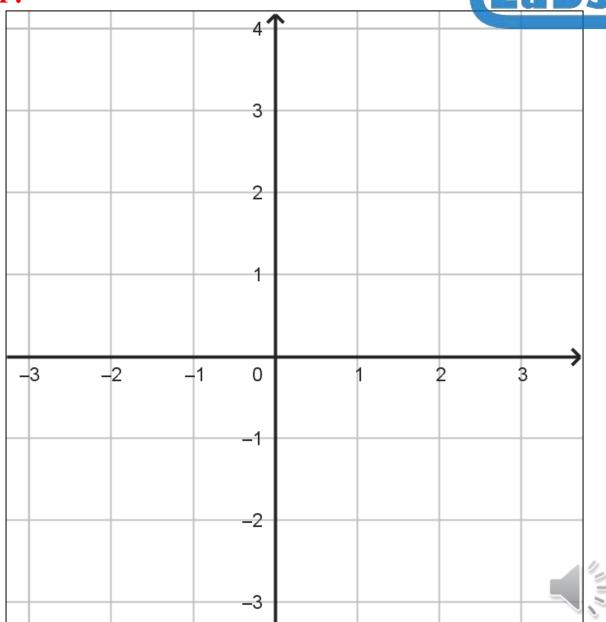
Example 1:

5. Plot the curve

Note that:

The curve of f is a reflection to the table of variations of f.

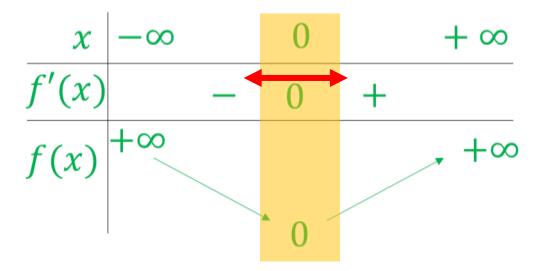
\boldsymbol{x}	$-\infty$		0		+ ∞
f'(x)		_	0	+	
f(x)	+8				+∞
A			• 0		



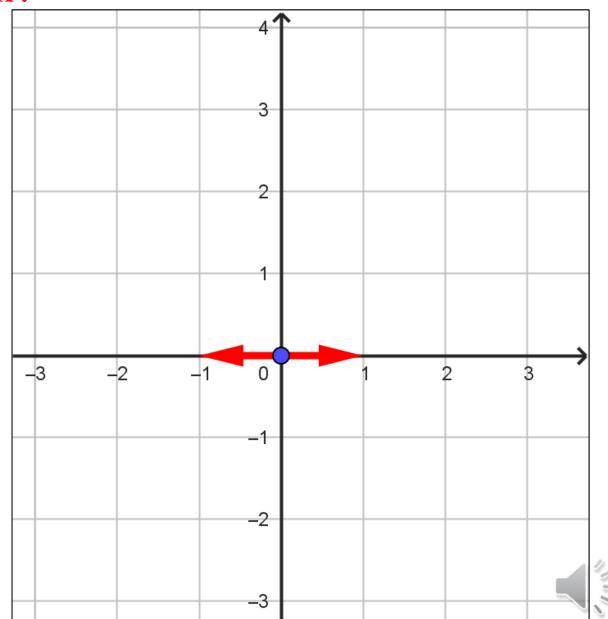
slide added by

Example 1:

5. Plot the curve

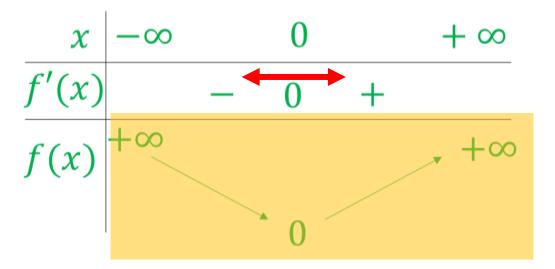


After plotting the extrema, plot the particular points. But in this case the particular is same the extremum

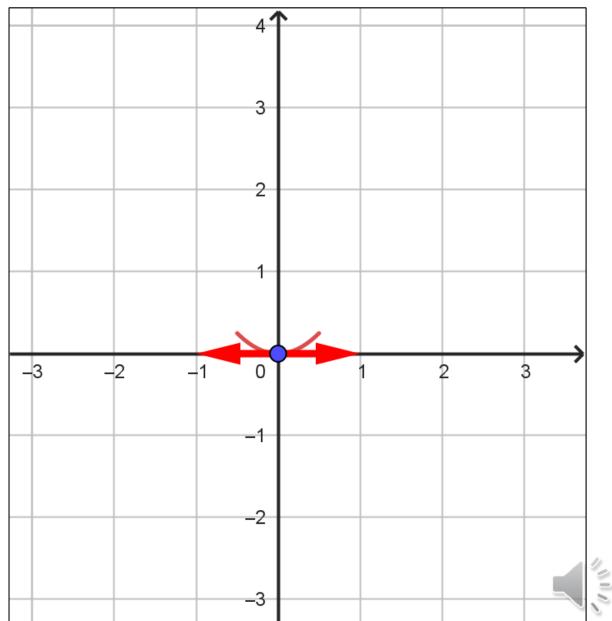


Example 1:

5. Plot the curve

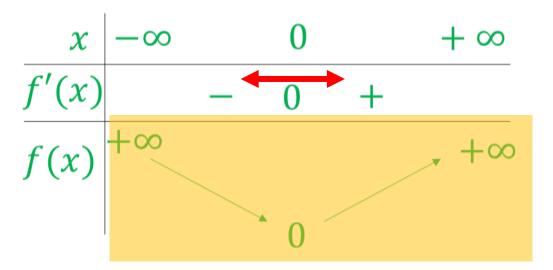


Note that at the local extremum the curve must not be sharp.



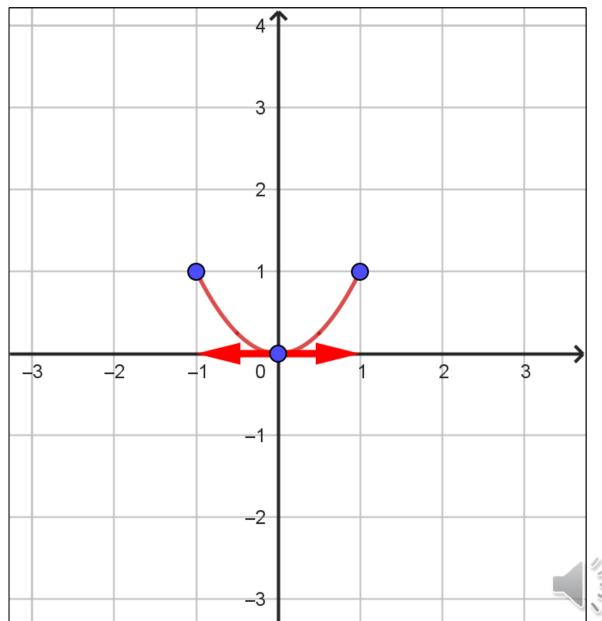
Example 1:

5. Plot the curve



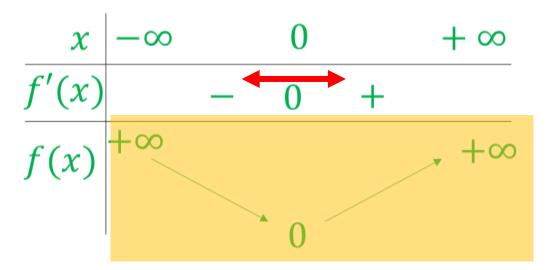
To help in drawing, we can find some helping points:

for
$$x = -1$$
; $y = (-1)^2 = 1$
for $x = 1$; $y = (1)^2 = 1$



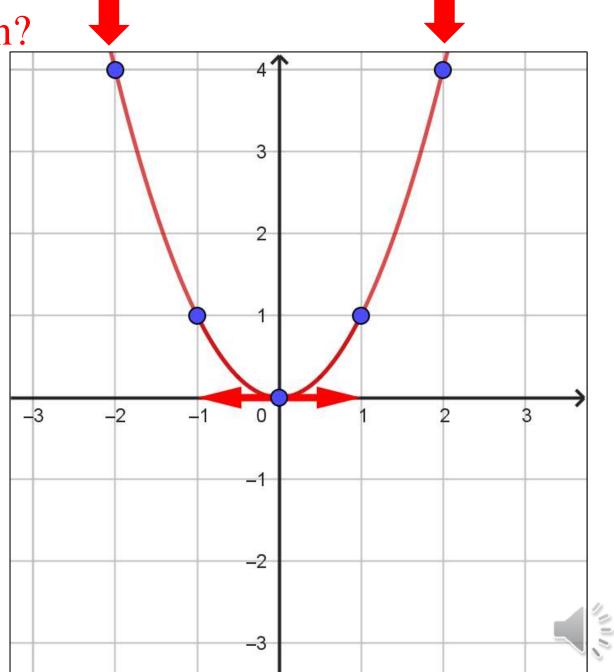
Example 1:

5. Plot the curve



Remark:

Don't stop at a point, draw a part of the curve after the point to represent infinity branches.



Example 2:

Consider the function f defined over IR=]- ∞ ;+ ∞ [by $f(x) = x^3 - 3x^2 + 3$. Study the variations of f and plot its curve (Cf).

1. Limits at the endpoints:

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 = +\infty \quad ; \qquad \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 = -\infty$$

2. Derivative + zeroes of f'(x):

$$f'(x) = 3x^2 - 6x$$

 $f'(x) = 0 ; 3x^2 - 6x = 0 ; 3x(x - 2) = 0 ; x = 0 \text{ or } x = 2$
 $y = 3$ $y = -1$

Example 2:

3. Table of variations.

4. Particular points if they exist

$$(x'x)$$
: for $y = 0$; $x^3 - 3x^2 + 3 = 0$
Using calculator:

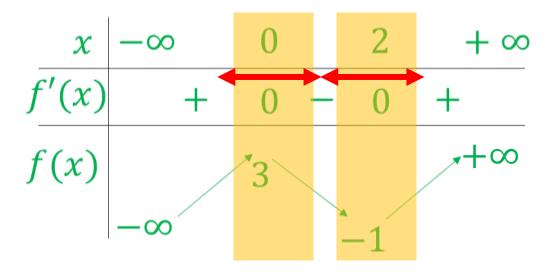
$$x \approx -0.9$$
; $x \approx 1.3$; $x \approx 2.5$

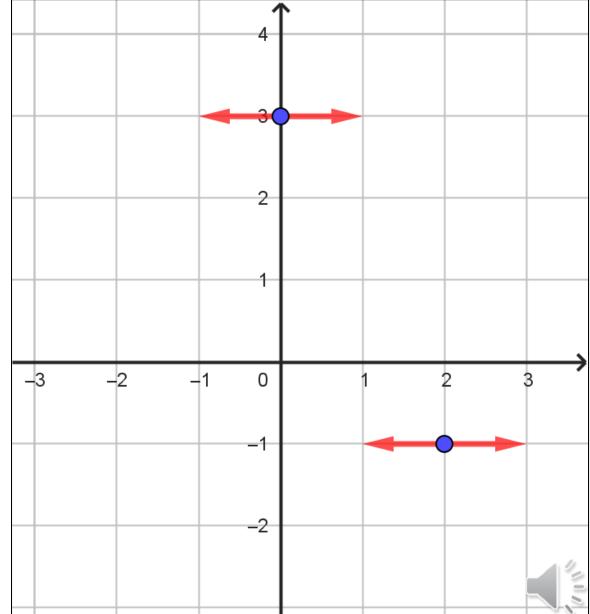
$$(y'y)$$
: for $x = 0$; $y = 3$

$$(0;3)$$
; $(-0.9;0)$; $(1.3;0)$; $(2.5;0)$

Example 1:

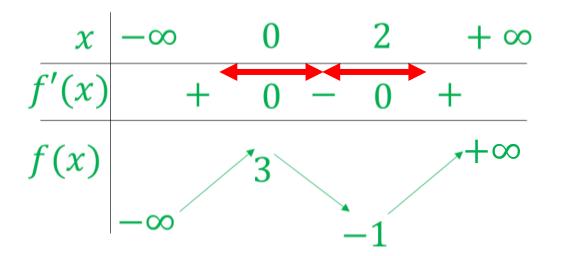
5. Plot the curve





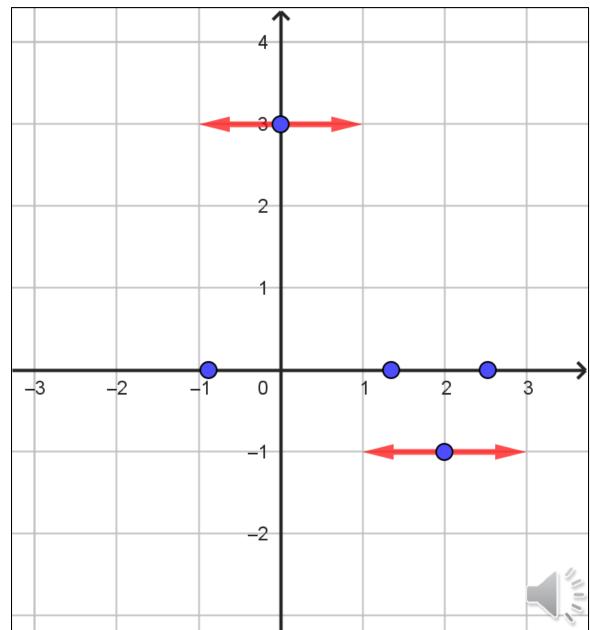
Example 1:

5. Plot the curve



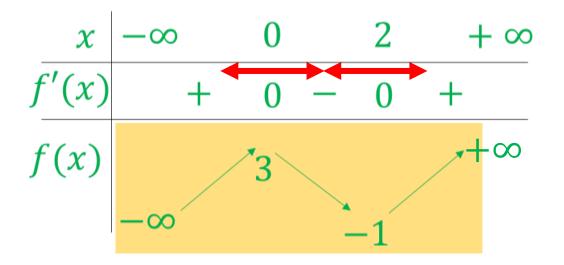
Plotting the P.P.

$$(0;3)$$
; $(-0.9;0)$; $(1.3;0)$; $(2.5;0)$



Example 1:

5. Plot the curve



Start by the extrema.

Continue according to the table of

variations

